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1 Transport of Energy

The energy the star radiates from its surface originates from its central region. There are different ways
in which a star transports this energy. Mostly it uses radiation, conduction and convection. In each of
the methods either particles or larger amounts of material are exchanged between hotter and cooler parts
and their mean free path together with the temperature gradient of the surroundings will play a decisive
role. The method of energy transport that will interest us the most is via radiation.

1.1 Radiative Transport of Energy

1.1.1 Basic Estimates

Let us first estimate the mean free path lph of a photon at an average point inside a star like the sun:

lph =
1
κρ

, (1)

where κ is a mean absorption coefficient (a radiative cross-section per unit mass averaged over frequency).
Stellar matter is very opaque (κ ≈ 1 cm2 g−1), while typical values of electron scattering are of order
κ ≈ 0.4 cm2 g−1. Using this and the mean density of matter in the sun, ρ̄� = 1.4 g cm−3, we obtain a
mean free path of only

lph ≈ 2 cm.

1.1.2 Diffusion of Radiative Energy

The above estimates have shown that for radiative transport in stars the mean free path lph of the
"transporting particles" (photons) is very small compared to the characteristic length R (stellar radius)
over which the transport extends: lph/R� ≈ 3 × 10−11. In this case, the transport can be treated as a
diffusion process, which yields an enormous simplification of the formalism.

the diffusive flux j of particles between places of different particle density n is given by

j = −D∇n, (2)

where D is coefficient of diffusion,

D =
1
3
vlp, (3)

determined by the average values of mean velocity v and mean free path lp of the particles.

In order to obtain the corresponding diffusive flux of radiative energy F , we replace n by the energy
density of radiation U ,

U = aT 4, (4)

v by the velocity of light c, and lp by lph according to equation (1). a = 7.57× 10−15 erg cm−3 K−4 is
the radiation-density constant.

Owning to the spherical symetry of the problem, F has only a radial component Fr = |F | = F and ∇U
reduces to the derivate in the radial direction

∂U

∂r
= 4aT 3 ∂T

∂r
, (5)
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Then equations (2)–(3) give immediately that

F = −4ac

3
T 3

κρ

∂T

∂r
. (6)

F = −krad∇T, (7)

where

krad =
4ac

3
T 3

κρ
(8)

represents the coefficient of conduction for this radiative transport.

We solve equation (6) for the gradient of the temperature and replace F by the usual local luminosity
l = 4πr2F ; then

∂T

∂r
= − 3

16πac

κρl

r2T 3
(9)

Of course, this simple equation becomes invalid when one approaches the surface of the star since the mean
free path becomes comparable with the remaining distance to the surface. Hence, the whole diffusion
approximation brakes down.

1.1.3 The Rosseland Mean for κν

The above equations are independent of the frequency ν; F and l are quantities integrated over all
frequencies, so that the quantity κ must represent a "proper mean" over ν. We shall now prescribe a
method for this averaging.

In general the absorption coefficient depends on the frequency ν. Let us denote this by adding a subscript
ν to all quantities that become frequency dependent: κν , lν , Dν , Uν , etc.

For the diffusive energy flux Fν of radiation in the interval [ν, ν + dν] we write now

Fν = −Dν∇Uν (10)

with

Dν =
1
3
clν =

c

3κνρ
(11)

while the energy density in the same interval is given by

Uν =
4π

c
B(ν, T ) =

8πh

c3

ν3

ehν/kT − 1
. (12)

B(ν, T ) denotes here the Planck function for the intensity of black-body radiation. From (12) we have

∇Uν =
4π

c

∂B

∂T
∇T, (13)

which together with (11) is inserted into (10), the latter then being integrated over all frequencies to
obtain the total flux F :
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F = −
[
4π

3ρ

∫ ∞

0

1
κν

∂B

∂T
dν

]
∇T. (14)

We have regained (7), but with

krad =
4π

3ρ

∫ ∞

0

1
κν

∂B

∂T
dν. (15)

Equating this expression for krad with that in the averaged form of (8), we have immediately the proper
formula for averaging the absorption coefficient:

1
κ

=
π

acT 3

∫ ∞

0

1
κν

∂B

∂T
dν. (16)

This is the so-called Rosseland mean (after Sven Rosseland).

Since

∫ ∞

0

∂B

∂T
dν =

acT 3

π
, (17)

the Rosseland mean is formally the harmonic mean of κν with the weighting function ∂B
∂T , and it can

simply be calculated, once the function κν is known from atomic physics.

2 Opacity

For describing opacity function κ(ρ, T ) is used. Certain approximations are used for this function, however
they never hold for the whole star and are used only in simplifying approaches.

2.1 Electron scattering

If an electromagnetic wave passes an electron, the electric field makes the electron oscilate. This electron
represents a classical dipole that radiates in other directions, i.e. the electron scatters part of the energy
of the incoming waves. The weakening of the original radiation due to scattering is equivalent to that by
absorption, and we can describe it with κν ,

κν =
8π

3
re

2

µemu
= 0.20(1 + X) (18)

where re is the classical electron radius and X the mass fraction of hydrogen. µe = 2
1+X . Since κν does

not depend on the frequency, we immediately obtain the Rosseland mean of electron scattering:

κSC = 0.20(1 + X) cm2g−1 (19)

The "Thomson scattering" just described neglects the exchange of momentum between electron and
radiation. If this becomes important, then κν will be reduced compared to the value given in equation
(18), though this effect plays a role only at temperatures sufficiently high for the scattered photons to
be very energetic. In fact during the scattering process the electron must obtain such a large momentum
that its velocity is comparable to c for equation (19) to become a bad approximation.



2 OPACITY 5

2.2 Absorption Due to Free-Free Transmitions

If during its thermal motion a free electron passes an ion, the two charged particles form a system which
can absorb and emit radiation. This mechanism is only effective as long as electron and ion are sufficiently
close. The mean thermal velocity of the electron is v ∼ T 1/2; therefore, if in a mass element the numbers
of electrons and ions are fixed, the number of systems temporarily able to absorb is porportional to T−1/2.

The absorption properties of such a system have been derived classicaly by Kramers, who calculated that
the absorption coefficient per system is proportional to Z2ν−3, where Z is the charge number of the ion.
We therefore expect the absorption coefficient κν of a given mixture of fully ionized matter to be

κν ∼ Z2ρT−1/2ν−3 (20)

Here the factor ρ appears because for given mass element the probability that two particles are accidentally
close together is proportional to the density.

If we use the equation (20), considering that a factor να contained in κν gives a factor Tα in κ, we find

κff ∼ ρT−7/2 (21)

All opacities of the form (21) are called Kramers’ opacities and give only a classical approximation. We
also omitted the factor Z2 which appears in (20). The weighed sum over the values of Z2 is taken into
the constant of proportionality in (21), which then depends on the chemical composition.
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3 The Assignment

Show that, if the frequency and temperature dependance of the mean free path for a photon is given by

lν ∝ ν3T 1/2

then the frequency averaged opacity satisfies Kramers’ law

κ ∝ ρT−3.5
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4 Solving the Problem

Let’s assume the diffusion approximation,

Dν =
1
3
clν =

c

3κνρ

and

κν ∼ Z2ρT−1/2ν−3. (22)

We include equation (22) in the integral for the Rosseland’s mean

1
κ

=
π

acT 3

∫ ∞

0

1
κν

∂B

∂T
dν. (23)

Hence, we get

1
κ

=
π

acT 3

T 1/2

Z2ρ

∫ ∞

0

ν3 ∂B

∂T
dν, (24)

1
κ

=
π

acT 3

T 1/2

Z2ρ

∂

∂T

∫ ∞

0

ν3Bdν, (25)

where B is

B(ν, T ) =
2h

c2

ν3

ehν/kT − 1
(26)

1
κ

=
2hπ

ac3T 3

T 1/2

Z2ρ

∂

∂T

∫ ∞

0

ν6

ehν/kT − 1
dν, (27)

When we introduce the new variables:

u =
hν

kT

du ∝ 1
T

dν

the equation has the form

1
κ

=
2hπ

ac3T 3

T 1/2

Z2ρ

∂

∂T

k7

h7

∫ ∞

0

T 6u6

eu − 1
Tdu. (28)

1
κ
≈ 14hπ

ac3T 3

T 1/2

Z2ρ

k7

h7
T 6 =

14hπ

ac3Z2ρ

k7

h7
T 7/2

As we can see, the result is

κ ∝ ρT−7/2



4 SOLVING THE PROBLEM 8

Formally, the integral in the equation (28) can be expressed with Riemann’s Zeta function:

ζ(x) =
1

Γ(x)

∫ ∞

0

ux−1

eu − 1
du

where x = 7 in our case. Therefore, the value of the integral has the value of

ζ(7) = 1.0083492774...

Since

ζ(n) =
∞∑

k=1

1
kn

.
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